查询
最新公告

几何群论专题

English | ISBN: 0226317218 | 2000 | 310 pages | PDF | 83 MB English | ISBN: 0226317218 | 2000 | 310 pages | PDF | 83 MB

In this book, Pierre de la Harpe provides a concise and engaging introduction to geometric group theory, a new method for studying infinite groups via their intrinsic geometry that has played a major role in mathematics over the past two decades. A recognized expert in the field, de la Harpe adopts a hands-on approach, illustrating key concepts with numerous concrete examples.

The first five chapters present basic combinatorial and geometric group theory in a unique and refreshing way, with an emphasis on finitely generated versus finitely presented groups. In the final three chapters, de la Harpe discusses new material on the growth of groups, including a detailed treatment of the "Grigorchuk group." Most sections are followed by exercises and a list of problems and complements, enhancing the book's value for students; problems range from slightly more difficult exercises to open research problems in the field. An extensive list of references directs readers to more advanced results as well as connections with other fields.

中文。ISBN:0226317218.2000.310页。PDF.83 MB英文。ISBN:0226317218.2000.310页。PDF。83 MB在这本书中,Pierre de la Harpe简要介绍了几何群论,这是一种通过其内在几何研究无限群的新方法,在过去二十年里在数学中发挥了重要作用。Harpe是该领域公认的专家,他采用动手的方法,用大量具体的例子来说明关键概念。 前五章以独特而新颖的方式介绍了基本的组合群和几何群理论,重点介绍了有限生成群和有限表示群。在最后三章中,de la Harpe讨论了关于s组成长的新材料,包括对“Grigorchuk组”的详细处理。大多数章节之后都是练习和问题及补充清单,提高了这本书对学生的价值;以及问题范围从稍微困难的练习到该领域的开放式研究问题。大量的参考文献将读者引向更高级的结果以及与其他领域的联系。
Download from free file storage


本站不对文件进行储存,仅提供文件链接,请自行下载,本站不对文件内容负责,请自行判断文件是否安全,如发现文件有侵权行为,请联系管理员删除。